On the irreducible module of quantum group $U_{q}\left(B_{2}\right)$ at a root of 1

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 272401
(http://iopscience.iop.org/0305-4470/27/7/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:35

Please note that terms and conditions apply.

On the irreducible module of quantum group $U_{q}\left(B_{2}\right)$ at a root of 1

Shanyou Zhou
Department of Mathematics, Graduate School, Academia Sinica, PO Box 3908, Beijing 100039, People's Republic of China

Received 23 April 1993 in final form 21 December 1993

Abstract

This paper deals with the irreducible highest-weight module $L(\lambda)$ of quantum group $U_{q}\left(B_{2}\right)$ when g is a root of unity. The character of $L(\lambda)$ has been obtained in one of the cases. As a consequence, its dimension has also been obtained. In addition, a centre element of $U_{q}\left(B_{2}\right)$ has been found in explicit form.

1. Introduction

As the quotient module of the Verma module $V(\lambda)$ of $U_{q}(g)$, the irreducible highest-weight module $L(\lambda)$ is always one of the most interesting subjects in representation theory. In this paper, we will discuss the Verma module $V(\lambda)$ of $U_{q}\left(B_{2}\right)$ in section 1. The explicit expression of singular vectors under the canonical basis contained in $V(\lambda)$ has been given when $q^{N}=1$. The embedding relations of the Verma proper submodule has been partly discussed. In section 2 , the character of irreducible highest-weight module $L(\lambda)$ has been determined. As a consequence, its dimension has also been obtained.

2. Verma module of $U_{q}\left(B_{2}\right)$

The quantum group $U_{q}\left(B_{2}\right)$ with Cartan matrix

$$
A=\left(a_{i j}\right)=\left(\begin{array}{cc}
2 & -2 \\
-1 & 2
\end{array}\right)
$$

is an associative algebra over the fraction field $\mathbb{C}(q)$, where q is an indeterminate. Its generators are $E_{i}, F_{i}, K_{i}, K_{i}^{-1}, i=1,2$ and the defined relations are

$$
\left\{\begin{array}{l}
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1 \tag{1}\\
K_{i} K_{j}=K_{j} K_{i} \\
K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j} \\
K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{i j}} F_{j} \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left(K_{i}-K_{i}^{-1}\right) /\left(q_{i}-q_{i}^{-1}\right) \\
\sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right]_{d_{i}} E_{i}^{s} E_{j} E_{i}^{1-a_{i j}-s}=0 \quad i \neq j \\
\sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right]_{d_{i}} F_{i}^{s} F_{j} F_{i}^{1-a_{i j}-s}=0
\end{array} \quad i \neq j\right.
$$

for $i, j=1,2$, where $d_{1}=1, d_{2}=2, q_{i}=q^{d_{i}}$; the Gaussian binomial coefficients are

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{d_{i}}=[n]_{d_{i}}!/[m]_{d_{i}}![n-m]_{d_{i}}!\quad \text { for } n, m \in \mathbb{N}
$$

defined by $[n]_{d_{i}}=\left(q_{i}^{n}-q_{i}^{-n}\right) /\left(q_{i}-q_{i}^{-1}\right)$ and $[n]_{d_{i}}!=[n]_{d_{i}}[n-1]_{d_{i}} \ldots[2]_{d_{i}}[1]_{d_{1}}$. In particular, put $[n]_{d_{i}}=[n]$ if $d_{i}=1$.

Lusztig [2] gives the canonical basis over $\mathbb{C}(q)$:
$\left\{F_{1}^{k_{1}} F_{112}^{k_{2}} F_{12}^{k_{3}} F_{2}^{k_{4}} \dot{X}_{1}^{l_{1}} K_{2}^{l_{2}} E_{2}^{r_{4}} E_{12}^{r_{3}} E_{112}^{r_{2}} E_{1}^{r_{1}} \mid k_{i}, r_{i} \in \mathbb{Z} \geqslant 0, l_{j} \in \mathbb{Z}, 1 \leqslant i \leqslant 4, j=1,2\right\}$
where

$$
\begin{array}{ll}
E_{12}=q^{-2} E_{1} E_{2}-E_{2} E_{1} & E_{112}=[2]^{-1}\left(E_{1} E_{12}-E_{12} E_{1}\right) \\
F_{12}=q^{2} F_{2} F_{1}-F_{1} F_{2} & F_{112}=[2]^{-1}\left(F_{12} F_{1}-F_{1} F_{12}\right) .
\end{array}
$$

De Concini and Kac [1] find the method to compute the centre elements of quantum group $U_{q}(g)$ for complex simple Lie algebra g. Using their method, we can get all of the centre elements of $U_{q}(g)$. For instance, taking the initial term $\varphi_{00}=\left\{q^{2} K_{2}\right\}_{q}+\left\{q^{4} K_{1}^{2} K_{2}\right\}_{q}$, we get the explicit expression of the quadratic Casimir element C of $U_{q}\left(B_{2}\right)$ (see [1], section 2)

$$
\begin{align*}
C=\left\{q^{2} K_{2}\right\}_{q}+ & \left\{q^{4} K_{1}^{2} K_{2}\right\}_{q}+\left(q-q^{-1}\right)^{2}\left\{q^{3} K_{1} K_{2}\right\}_{q} F_{1} E_{1}+[2]^{2} F_{2} E_{2} \\
& -q^{-1}\left(q^{2}-q^{-2}\right) K_{1}^{-1} F_{1} F_{2} E_{12}+q\left(q^{2}-q^{-2}\right) K_{1} F_{12} E_{2} E_{1} \\
& +\left(q-q^{-1}\right)^{2}\left\{q^{3} K_{1}\right\}_{q} F_{12} E_{12}-\left(q-q^{-1}\right)^{2} F_{1} F_{12} E_{12} E_{1} \\
& -q\left(q^{2}-q^{-2}\right) F_{1} F_{12} E_{112}+q^{-1}\left(q^{2}-q^{-2}\right) F_{112} E_{12} E_{1}+[2]^{2} F_{112} E_{112} \tag{2}
\end{align*}
$$

where

$$
\{x\}_{q}=\frac{\left(x+x^{-1}\right)}{\left(q-q^{-1}\right)^{2}}
$$

Using a fully different method, Zhang et al [4] have also obtained the same expression with a different constant term.

The Verma module $V(\lambda)$ with the highest-weight λ of quantum group $U_{q}\left(B_{2}\right)$ is generated by the so-called maximal vector v_{0} such that $E_{i} \cdot v_{0}=0, K_{i} \cdot v_{0}=q^{\left(\lambda \mid \alpha_{i}\right)} v_{0}$, $i=1,2$. From the canonical basis of $U_{q}\left(B_{2}\right)$, we can get the basis of $V(\lambda)$ easily

$$
\left\{F_{1}^{k_{1}} F_{112}^{k_{2}} F_{12}^{k_{3}} F_{2}^{k_{4}} v_{0} \mid k_{i} \in \mathbb{Z}_{\geqslant 0,1} \leqslant i \leqslant 4\right\}
$$

The vector $v_{\mathrm{s}} \in V(\lambda)$ is called the singular vector if v_{s} is not its maximal vector v_{0} and $E_{i} \cdot v_{\mathrm{s}}=0, i=1,2$. Obviously, if $v_{\mathrm{s}} \in V(\lambda)$ is a singular vector, then it can generate a proper Verma submodule of $V(\lambda)$. Thus we have

Theorem 1.1. The Verma module $V(\lambda)$ is irreducible if and only if it does not contain any singular vector v_{s}.

For generic q, De Concini and Kac [1] pointed out that Verma module $V(\lambda)$ of $U_{q}(g)$ is irreducible if and only if $2(\lambda+\rho \mid \beta) \neq(\beta \mid \beta)$ for all $m \in \mathbb{N}$ and positive root β, where ρ is half of the sum of all positive roots of Lie algebra g.

But if q is the N th primitive root of unity (for simplicity, let N be odd), then $F_{1}^{N}, F_{112}^{N}, F_{12}^{N}, F_{2}^{N}$ belong to the centre subalgebra of $U_{q}\left(B_{2}\right)$. Thus $F_{1}^{k_{1} N} F_{112}^{k_{2} N} F_{12}^{k_{3} N} F_{2}^{k_{4} N} v_{0} \in$ $V(\lambda)$ must be the singular vector, where $k_{i} \in \mathbb{Z}_{\geqslant 0}$ are not all zero. We will call them the singular vectors of type 1 . Therefore if q is a root of 1 , the Verma module $V(\lambda)$ is always reducible.

Theorem I.2. Let $V(\lambda)$ be the Verma module with the highest weight λ. If q is the N th root of 1 and N is odd, then the congruence equations associated with the Verma module $V(\lambda)$

$$
\begin{equation*}
2\left(\lambda+\rho \mid \beta_{i}\right) \equiv r_{i}\left(\beta_{i} \mid \beta_{i}\right)(\bmod N) \quad i=1,2,3,4 \tag{3}
\end{equation*}
$$

(where $\beta_{1}=\alpha_{1}, \beta_{2}=2 \alpha_{1}+\alpha_{2}, \beta_{3}=\alpha_{1}+\alpha_{2}, \beta_{4}=\alpha_{2}, \alpha_{1}$ is the short root, α_{2} is the long root of B_{2}) have non-zero solution r_{i} if and only if the Verma module $V(\lambda)$ contains one-dimensional singular vector $v_{\mathrm{s}}^{(i)}$ which is not of type 1.

Proof. Put $v_{s}^{(i)}$ in the form of the canonical basis. Solve the equations $E_{j} v_{s}^{(i)}=0, j=1,2$. We can get the explicit expression of one-dimensional singular vector $v_{\mathrm{s}}^{(i)}$ as follows:
$v_{\mathrm{s}}^{(1)}=F_{1}^{r_{1}} v_{0} \quad v_{\mathrm{s}}^{(2)}=\varphi_{2}^{(0)}\left(r_{2}\right) v_{0} \quad v_{\mathrm{s}}^{(3)}=\varphi_{3}^{(0)}\left(r_{3}\right) v_{0} \quad v_{\mathrm{s}}^{(4)}=F_{2}^{r_{4}} v_{0}$
where

$$
\varphi_{2}^{(0)}\left(r_{2}\right)=\sum_{s=0}^{2 r_{2}} \sum_{0 \leqslant 2 t \leqslant s, s \leqslant r_{2}+t} a_{(s, t)} F_{1}^{2 r_{2}-s} F_{112}^{t} F_{12}^{s-2 t} F_{2}^{r_{2}-s+t}
$$

the coefficients $a_{(s, t)} \in \mathbb{C}(q)$ satisfy the relations
$a_{(s+1, t)}=a_{(s, t)} q^{\left(\lambda \mid \alpha_{1}\right)+2\left(r_{2}-s+t-1\right)}\left[2\left(r_{2}-s+t\right)\right]\left[\left(\lambda \mid \alpha_{1}\right)+1-s\right] /[2][s-2 t+1]$
$a_{(s, t+1)}=a_{(s, t) q^{-2\left(r_{2}-s+2 t\right)}[2]^{2}[(s-2 t)][s-2 t-1] /\left[2\left(r_{2}-s+t+1\right)\right][2(t+1)]}$
and $\varphi_{3}^{(0)}\left(r_{3}\right)=\sum_{s=0}^{r_{3}} \sum_{0 \leqslant 2 t \leqslant s} a_{(s, t)} F_{1}^{r_{3}-s} F_{112}^{t} F_{12}^{s-2 t} F_{2}^{r_{3}-s+t}$, the coefficients $a_{(s, t)} \in \mathbb{C}(q)$ satisfy the relations
$a_{(s+1, t)}=a_{(s, t)} q^{\left(\lambda \mid \alpha_{1}\right)+2\left(r_{3}-s+t-1\right)}\left[r_{3}-s\right]\left[\left(\lambda \mid \alpha_{1}\right)+r_{3}-2 s+2 t+1\right] /[2][s-2 t+1]$
$a_{(s, t+1)}=a_{(s, t)} q^{-\left(\lambda \mid \alpha_{1}\right)-\left(r_{3}-2 s+4 t+1\right)}[2]^{2}[s-2 t][s-2 t-1] /\left[\left(\lambda \mid \alpha_{1}\right)+r_{3}-2 s+2 t+3\right][2(t+1)]$.

Remark. Dobrev [3] has got the explicit formula for the singular vectors of $V(\lambda)$ of quantum group $U_{q}(g)$ for complex simple Lie algebra g under another basis.

Replacing v_{0} by $v_{\mathrm{s}}^{(i)}$, we can find the new generation $v_{\mathrm{s}}^{(i j)}$ of singular vectors, etc. If the congruence equation (3) has zero solution, then the corresponding singular vector is of type 1 .

Denote by $V^{(i)}$ the Verma submodule generated by $v_{\mathrm{s}}^{(i)}$ and by $V^{(i j)}$ the Verma submodule generated by $v_{\mathrm{s}}^{(i j)}$ and so forth.

It is clear that we have the partly embedding relation of proper Verma submodules according to the relations of singular vectors.

Theorem 1.3. If the solutions $r_{i}(1 \leqslant i \leqslant 4)$ of the congruence equations (3) satisfy $0<r_{i}<N, r_{2}=r_{1}+r_{4}$ and $r_{3}=r_{1}+2 r_{4}$, then
(i) $V(\lambda) \supset V^{(1)}+V^{(4)}$
(ii) $V^{(1)} \cap V^{(4)} \supset V^{(12)}+V^{(43)}$
(iii) $V^{(12)} \cap V^{(43)} \supset V^{(2)}+V^{(3)}$
(iv) $V^{(2)} \cap V^{(3)} \supset V^{(1234)}$.

Proof. It is clear for (i). Note that there are the relations of the singular vectors $v_{\mathrm{s}}^{(12)}=$ $v_{\mathrm{s}}^{(41)} \in V^{(1)} \cap V^{(4)}$ and $v_{\mathrm{s}}^{(43)}=v_{\mathrm{s}}^{(14)} \in V^{(\mathrm{t})} \cap V^{(4)} ; v_{\mathrm{s}}^{(2)}=v_{\mathrm{s}}^{(123)}=v_{\mathrm{s}}^{(431)} \in V^{(12)} \cap V^{(43)}$ and $v_{\mathrm{s}}^{(3)}=v_{\mathrm{s}}^{(432)}=v_{\mathrm{s}}^{(124)} \in V^{(12)} \cap V^{(43)} ; v_{\mathrm{s}}^{(1234)}=v_{\mathrm{s}}^{(24)}=v_{\mathrm{s}}^{(31)} \in V^{(2)} \cap V^{(3)}$. The arguments (ii), (iii) and (iv) hold.

3. Irreducible module $L(\lambda)$

If the Verma module $V(\lambda)$ is reducible and J is its maximal proper submodule, then the quotient space $L(\lambda)=V(\lambda) / J$ as a $U_{q}\left(B_{2}\right)$-module is an irreducible highest-weight module.

Theorem 2.1. In the condition of theorem 1.3, the maximal proper submodule of $V(\lambda)$ of $U_{q}\left(B_{2}\right)$ is $V^{(1)}+V^{(4)}$.

Proof. We only need to prove that all of the singular vectors of type 1 are contained in the maximal proper submodule $V^{(1)}+V^{(4)}$ of $V(\lambda)$. In fact, we have $F_{1}^{N} v_{0}=v_{s}^{(11)}, F_{2}^{N} v_{0}=$ $v_{\mathrm{s}}^{(44)}, F_{1}^{N} F_{2}^{N} v_{0}=v_{\mathrm{s}}^{(33)}$, and $F_{1}^{2 N} F_{2}^{N} v_{0}=v_{\mathrm{s}}^{(22)}$. On the other hand, $F_{12}^{r_{1}+r_{4}} v_{0}$ and $F_{112}^{r_{1}+r_{4}-1} v_{0}$ belong to $V^{(1)}+V^{(4)}$. So $F_{12}^{N} v_{0}, F_{112}^{N} v_{0} \in V^{(1)}+V^{(4)}$ for $r_{1}+r_{4}<N$.

Therefore, the irreducible module $L(\lambda)=V(\lambda) /\left(V^{(1)}+V^{(4)}\right)$. But $V^{(1)}+V^{(4)}$ is not the direct sum of vector spaces $V^{(1)}$ and $V^{(4)}$. Furthermore, we have:

Lemma 2.2. Let q be the N th root of 1 and N is odd. $V(\lambda)$ is the Verma module with the highest weight λ. If the equations (3) have the solutions $0<r_{i}<N(1 \leqslant i \leqslant 4)$, such that $r_{2}=r_{1}+r_{4}, r_{3}=r_{1}+2 r_{4}$, then
(i) $V^{(1)} \cap V^{(4)}=V^{(12)}+V^{(43)}$
(ii) $V^{(12)} \cap V^{(43)}=V^{(2)}+V^{(3)}$
(iii) $V^{(2)} \cap V^{(3)}=V^{(1234)}$.

Proof. We have $V^{(1)} \cap V^{(4)} \supset V^{(12)}+V^{(43)}$ by theorem 1.3. But every singular vector contained in $V^{(1)} \cap V^{(4)}$ must be in $V^{(12)}+V^{(43)}$, so (1) holds. Similarly, we can prove (ii) and (iii).

As we know that the character of Verma module $V(\lambda)$ of $U_{q}\left(B_{2}\right)$ is

$$
\operatorname{ch} V(\lambda)=\left(\left(1-t_{1}\right)\left(1-t_{1}^{2} t_{2}\right)\left(1-t_{1} t_{2}\right)\left(1-t_{2}\right)\right)^{-1}
$$

so we have

$$
\begin{array}{ll}
\operatorname{ch} V^{(1)}=t_{1}^{r_{1}} \operatorname{ch} V(\lambda) & \operatorname{ch} V^{(4)}=t_{2}^{r_{4}} \operatorname{ch} V(\lambda) \\
\operatorname{ch} V^{(12)}=t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{4}} \operatorname{ch} V(\lambda) & \operatorname{ch} V^{(43)}=t_{1}^{r_{1} t_{2}^{r_{1}+r_{4}} \operatorname{ch} V(\lambda)} \\
\operatorname{ch} V^{(2)}=t_{1}^{2\left(r_{1}+r_{4}\right)} t_{2}^{r_{1}+r_{4}} \operatorname{ch} V(\lambda) & \operatorname{ch} V^{(3)}=t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{1}+2 r_{4}} \operatorname{ch} V(\lambda)
\end{array}
$$

and

$$
\operatorname{ch} V^{(1234)}=t_{1}^{2\left(r_{1}+r_{4}\right)} t_{2}^{r_{1}+2 r_{4}} \operatorname{ch} V(\lambda)
$$

Thus by lemma 2.2 the character of $L(\lambda)$ is
$\operatorname{ch} L(\lambda)=\operatorname{ch} V(\lambda)-\operatorname{ch} V^{(1)}-\operatorname{ch} V^{(4)}+\operatorname{ch} V^{(12)}+\operatorname{ch} V^{(43)}-\operatorname{ch} V^{(2)}-\operatorname{ch} V^{(3)}+\operatorname{ch} V^{(1234)}$

$$
\begin{aligned}
= & \operatorname{ch} V(\lambda)\left(1-t_{1}^{r_{1}}-t_{2}^{r_{4}}+t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{4}}+t_{1}^{r_{1}} t_{2}^{r_{1}+r_{4}}-t_{1}^{2\left(r_{1}+t_{4}\right)} t_{2}^{r_{1}+r_{4}}\right. \\
& \left.-t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{1}+2 r_{4}}+t_{1}^{2\left(r_{1}+r_{4}\right)} t_{2}^{r_{1}+2 r_{4}}\right) .
\end{aligned}
$$

Theorem 2.3. Let q be the N th root of 1 and N be an odd integer. If the congruence equations (3) have the solutions r_{j} such that $0<r_{i}<N, r_{2}=r_{1}+r_{4}$ and $r_{3}=r_{1}+2 r_{4}$, then the character of the irreducible $U_{q}\left(B_{2}\right)$-module $L(\lambda)$ is
$\operatorname{ch} L(\lambda)=\sum_{s=0}^{r_{1}-1} \sum_{u=1}^{r_{4}} \sum_{p=0}^{u-1} \sum_{w=0}^{u-1} t_{1}^{s}\left(t_{1}^{2} t_{2}\right)^{w}\left(t_{1} t_{2}\right)^{r_{4}+s-u} t_{2}^{p}+\sum_{s=1}^{r_{1}-1} \sum_{u=0}^{s-1} \sum_{p=0}^{r_{4}+s-\mu-1} \sum_{w=0}^{r_{4}-1} t_{1}^{s}\left(t_{1}^{2} t_{2}\right)^{w}\left(t_{1} t_{2}\right)^{u} t_{2}^{p}$.

Proof. We have

$$
\begin{aligned}
1-t_{1}^{r_{1}}-t_{2}^{r_{4}}+ & t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{4}}+t_{1}^{r_{1}} t_{2}^{r_{1}+r_{4}}-t_{1}^{2\left(r_{1}+r_{4}\right)} t_{2}^{r_{1}+r_{4}}-t_{1}^{r_{1}+2 r_{4}} t_{2}^{r_{1}+2 r_{4}}+t_{1}^{2\left(r_{1}+r_{4}\right)} t_{2}^{r_{1}+2 r_{4}} \\
= & \left(1-t_{1}\right)\left(1-t_{1}^{2} t_{2}\right)\left(1-t_{1} t_{2}\right)\left(1-t_{2}\right)\left\{\sum_{s=0}^{r_{1}-1} \sum_{u=1}^{r_{4}} \sum_{p=0}^{u-1} \sum_{w=0}^{u-1} t_{1}^{s}\left(t_{1}^{2} t_{2}\right)^{w}\left(t_{1} t_{2}\right)^{r_{4}+s-u} t_{2}^{p}\right. \\
& \left.+\sum_{s=1}^{r_{1}-1} \sum_{u=0}^{s-1} \sum_{p=0}^{r_{4}+s-\mu-1} \sum_{w=0}^{r_{4}-1} t_{1}^{s}\left(t_{1}^{2} t_{2}\right)^{w}\left(t_{1} t_{2}\right)^{u} t_{2}^{p}\right\}
\end{aligned}
$$

Corollary. $\quad \operatorname{dim} L(\lambda)=\frac{1}{6} r_{1} r_{2} r_{3} r_{4}$.
Proof. By theorem 2.3, we have

$$
\begin{aligned}
\operatorname{dim} L(\lambda) & =r_{1} \sum_{u=1}^{r_{4}} u^{2}+\sum_{s=1}^{r_{1}-1} \sum_{u=0}^{s-1} r_{4}\left(r_{4}+s-u\right) \\
& =\frac{1}{6} r_{4}\left(r_{4}+1\right)\left(2 r_{4}+1\right)+r_{4}^{2} \frac{r_{1}\left(r_{1}-1\right)}{2}+\frac{1}{12} r_{4}\left(r_{1}-1\right) r_{1}\left(2 r_{1}-1\right)+\frac{1}{4} r_{4} r_{1}\left(r_{1}-1\right) \\
& =\frac{1}{6} r_{1}\left(r_{1}+r_{4}\right)\left(r_{1}+2 r_{4}\right) r_{4} \\
& =\frac{1}{6} r_{1} r_{2} r_{3} r_{4} .
\end{aligned}
$$

Acknowledgment

This work is supported by the National Science Foundation of China.

References

[1] De Concini C and Kac V G 1990 Representation of quantum groups of roots 1 Colloque Dixmier Progress Math 92 (Birkhaiiser) pp 471-506
[2] Lusztig G 1990 Quantum groups at root of 1 Geom. Ded. 35 89-114
[3] Dobrev V K 1992 Singular vectors of representations of quantum groups J. Phys. A: Math. Gen. 25 149-60
[4] Zhang R B, Gould M D and Bracken A J 1991 Generalized Gelfand invariants of quantum groups J. Phys. A: Math. Gen. 24 937-43

